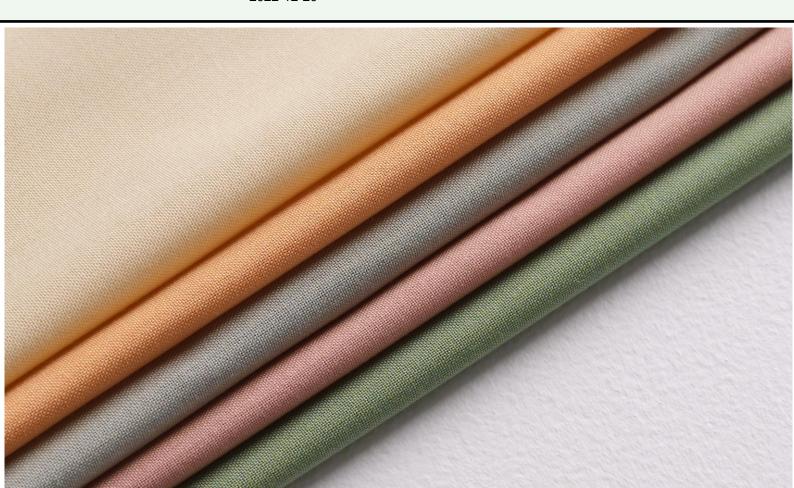
Environmental Product Declaration

In accordance with ISO 14025 for:

Karat

from


AB Ludvig Svensson

国Svensson

Programme: The International EPD® System, <u>www.environdec.com</u>

Programme operator: EPD International AB

EPD registration number: S-P-03359
Publication date: 2022-01-03
Valid until: 2022-12-20

国Svensson

Programme information

Programme:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden
	www.environdec.com info@environdec.com
PCR (2012:14 ver. 2.13) Woven, knitted	er. 3.01. has been used and with support and guidance from I, or crocheted fabrics (of synthetic fibers). Pre-certified due to the new PCR for fabrics is still under development.
.,	chnical Committee of the International EPD® System. Review info@environdec.com
Independent third-party verification of the	e declaration and data, according to ISO 14025:2006:
\square EPD process certification \boxtimes EPD ver	ification
Third party verifier: Martyna Mikusinska, Sweco Sverige AB martyna.mikusinska@sweco.se	
In case of recognised individual verifiers Approved by: The International EPD® Sy	
Procedure for follow-up of data during E	PD validity involves third party verifier:
⊠ Yes □ No	

The International EPD® System

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable.

Company information

Owner of the EPD:

AB Ludvig Svensson, Bangatan 8 511 54 Kinna, Sweden, +46320209200, info@ludvigsvensson.com

Description of the organisation:

AB Ludvig Svensson specializes in textile climate solutions giving plants better conditions to grow and people better places to work, travel, meet, recover and study. By sharing knowledge and being close to our customers, we are a business partner to trust. Our headquarter and production in Kinna, Sweden provides unique opportunities to influence, develop, control, and own the entire manufacturing process from the raw materials used to the finished product. Svensson was founded in 1887 and has operations in seven countries and 400 employees around the world.

Product-related or management system-related certifications:

ISO 9001:2015, ISO 14001:2015, Oeko-tex 100 class IV

Name and location of production site:

AB Ludvig Svensson, Kinna, Sweden.

Product information

Product:

Name: Karat and Karat RE Product identification: 8500

Product description: Fabric for curtains, made from polyester, warranty times 5 years (exchange rate is probably longer).

Certified according to:

Oeko-tex 100 class IV¹, this ensures that Karat does not contain any harmful substances.

KARAT 300 | Hanging fabrics | Products | Svensson (ludvigsvensson.com)

Recycled material:

The difference between Karat and Karat RE is that the polyester is 100% recycled in Karat RE.

Other product information:

UN CPC code: 2674 (KN number 551219)

Geographical scope:

Sweden

¹ STANDARD 100 by OEKO-TEX®

Table 1. Product characteristics

PRODUCT CHARACTERISTICS						
FABRICS	1. Karat	2. Karat RE				
CONSTRUCTIVE CHARACTERISTIC	S					
Composition Regulation (EU) No 1007/2011	100 % polyester (PES)	100 % recycled polyester (PES)				
Weave	Woven fabrics ISO 3572:1976	Woven fabrics ISO 3572:1976				
Mass per unit area [g/m2] ISO 3801 EN 12127	150	150				
Width [cm]	300	300				
DYEING						
Colour Index	8500 (internal colour code)					
PERFORMANCE CHARACTERISTIC						
Martindale Pilling test, UNI EN ISO 12945-2:2002	N/A***	N/A***				
pH of water extract EN ISO 3071/06	5,5	5,5				
Stretch properties	N/A***	N/A***				
Dimensional change to washing UNI EN ISO 105 C06:2010	5	5				
COLOUR FASTNESS						
Light Xenon test UNI EN ISO 105 B02/04	6	6				
Washing with mild detergent at 40°C ISO 105 C10:2006	5	5				
Water UNI EN ISO 105 E01/98	4-5	4-5				
Sea water UNI EN ISO 105 E02:2013	N/A*	N/A*				
Chlorine UNI EN ISO 105 E03:2010	N/A**	N/A**				
Acid and alkaline perspiration UNI EN ISO 105 E04:2013	5	5				
Dry and wet rubbing UNI EN ISO 105 X12/03	DRY 5 WET 5	DRY 5 WET 5				

^{*} Karat is not intended for outdoor use

_

^{**} Karat's washing instructions2 doesn't include washing with chlorine

^{***} Not applicable for curtain fabric

² KARAT 300 | Hanging fabrics | Products | Svensson (ludvigsvensson.com)

LCA information

Functional unit / declared unit: 1m² Karat fabric

Time representativeness: Core data from 2021, upstream data from 2017, downstream is generic data (only transport to customer (2009-2020) and disposal).

Database(s) and LCA software used: SimaPro Eco invent 3.7, SimaPro Version 9.2.0.2

System diagram: see figure 1.

Description of system boundaries: Cradle-to-grave

Excluded lifecycle stages: None

More information

Some general assumptions have been made around transport vehicle to fit the database data from Ecoinvent 3.7 (compiled March 2021). Country electricity mix datasets have been used for electricity for the upstream processes when the sites reports that they use the country electricity net.

For the Core process used general data for Sweden has been used (wind power >3MW turbine). This shows a 0,025 kg CO2 eq. per kWh while our supplier states that is 0,010 kg CO2 eq.

Generally, the LCA data should be used with precaution if interpreted for any other purpose than this EPD.

Emissions from wastewater is from entire production site in Kinna, dyeing and finishing of textiles of wool and polyester yarn and fabrics.

Waste from core process is allocated from all production.

As the difference between Karat and Karat RE is that the polyester is 100% recycled in Karat RE. Therefore, the environmental impact only differs in the upstream process.

LCA methodology

Cut-off rules: Less than 1% environmental relevance.

Allocation rules: In this assessment physical allocation is done as far as possible. When other allocations are used, it is expressed if it may be significant to the results.

LCA practitioner

Pierre Halldén, AB Ludvig Svensson pierre.hallden@ludvigsvensson.com

Erica Delersjö, AB Ludvig Svensson erica.delersjo@ludvigsvensson.com

System diagram

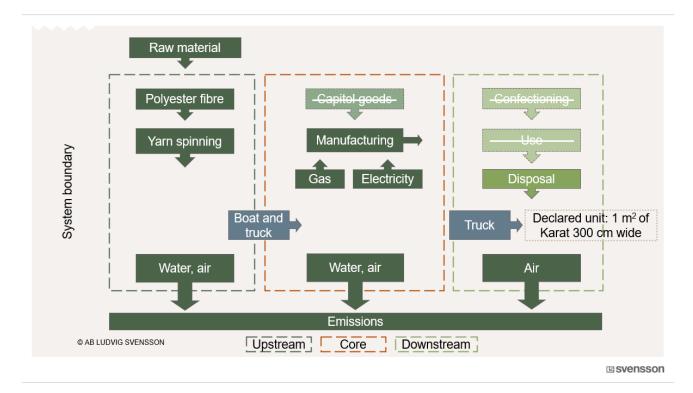


Figure 1. System diagram of Karat and Karat RE

Content declaration

Product

The raw materials and packaging does not contain substances that are regulated in the Reach legislation and SVHC and the Candidate List of SVHC.

Table 2. Product components for Karat and Karat RE.

Product components	Weight (kg)	Post-consumer material (weight-%)	Renewable material (weight-%)
Polyester yarn	0,1495	0% for Karat 100% for Karat RE	0
Dye stuff	0,00075	0	0

Packaging materials	Weight (kg)	Weight-% (versus the product)	Renewable material (weight-%)
Cardboard box	0,057	100	100
Plastic wrapping (Polyethylene)	0,004	10	0
Paper tubes	0,005	Reuse 3 times	100

Packaging

Distribution packaging: The finished fabric is either folded or rolled. 70% folding, folded into a cardboard box, 30% on paper roll with plastic wrapping.

Consumer packaging: N/A

Recycled material

Provenience of recycled materials (pre-consumer or post-consumer) in the product: In Karat RE, 100% is pre consumer recycled. 100% of the cardboard is recycled. 10% of the plastic wrapping comes from recycled source. Paper tubes are reused three times with Svensson customer.

Environmental performance

Potential environmental impact

Below is the environmental impact for the Karat and Karat RE per functional unit and per life cycle stage.

Table 3. Impact categories according to PCR on Karat

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
	Fossil	kg CO ₂ eq.	1,21E+00	2,47E-01	3,91E-01	1,85E+00
	Biogenic	kg CO ₂ eq.	8,73E-03	3,23E-03	7,37E-06	1,20E-02
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	5,00E-04	4,38E-04	5,55E-06	9,44E-04
	TOTAL	kg CO ₂ eq.	1,22E+00	2,51E-01	3,91E-01	1,87E+00
Acidification potentia	al (AP)	kg SO ₂ eq.	4,06E-03	1,67E-03	9,27E-05	5,81E-03
Eutrophication poter	Eutrophication potential (EP)		1,66E-03	5,91E-04	9,30E-05	2,35E-03
Formation potential of tropospheric ozone (POCP)		kg C ₂ H ₄ eq.	2,20E-04	9,26E-05	3,30E-06	3,16E-04
Ozon-depletion potential		kg CFC11 equivalents	1,81E-06	1,38E-07	2,83E-09	1,95E-06
Abiotic depletion potential – Elements		kg Sb eq.	7,35E-06	9,98E-06	6,08E-08	1,74E-05
Abiotic depletion potential - Fossil fuels		MJ, net calorific value	2,03E+01	1,17E+01	2,33E-01	3,22E+01
Water scarcity poten	tial	m³ eq.	4,64E-01	1,02E-01	3,96E-03	5,70E-01

Table 4. Impact categories according to PCR on Karat RE

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
	Fossil		8,66E-01	2,47E-01	3,91E-01	1,50E+00
	Biogenic	kg CO ₂ eq.	3,29E-02	3,22E-03	7,37E-06	3,61E-02
Global warming potential (GWP)	Land use and land transformation	kg CO ₂ eq.	4,39E-04	4,36E-04	5,55E-06	8,80E-04
	TOTAL	kg CO ₂ eq.	9,00E-01	2,51E-01	3,91E-01	1,54E+00
Acidification potentia	ıl (AP)	kg SO ₂ eq.	2,90E-03	1,67E-03	9,27E-05	4,66E-03
Eutrophication poter	Eutrophication potential (EP)		1,62E-03	5,91E-04	9,30E-05	2,31E-03
Formation potential of tropospheric ozone (POCP)		kg C ₂ H ₄ eq.	1,47E-04	9,26E-05	3,30E-06	2,43E-04
Ozon-depletion potential		kg CFC11 equivalents	9,12E-08	1,38E-07	2,83E-09	2,32E-07
Abiotic depletion potential – Elements		kg Sb eq.	2,04E-06	9,98E-06	6,08E-08	1,21E-05
Abiotic depletion potential - Fossil fuels		MJ, net calorific value	1,10E+01	1,17E+01	2,33E-01	2,29E+01
Water scarcity poten	tial	m³ eq.	2,49E-01	1,05E-01	5,92E-04	3,55E-01

The environmental impact of polyester fabric in a lifecycle perspective, comes mostly from the production of raw material. The difference between Karat and Karat RE is that the polyester is 100% recycled in Karat RE. Therefore, the largest environmental impact is in the upstream process.

Use of resources

The indicators below are declared for each life cycle state for Karat and Karat RE.

Table 5. Values from CED method 1.11, water from AWARE v1.04 for Karat

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
Use as energy carrier		MJ, net calorific value	2,32E+00	6,46E+00	4,17E-03	8,79E+00
Primary energy resources – Renewable	Used as raw materials	MJ, net calorific value	0	0	0	0
TOTAL		MJ, net calorific value	2,32E+00	6,46E+00	4,17E-03	8,79E+00
Use as energy carrier		MJ, net calorific value	3,41E+01	3,35E+00	2,55E-01	3,77E+01
Primary energy resources – Used as raw Non-renewable materials		MJ, net calorific value	0	0	0	0
TOTAL		MJ, net calorific value	3,41E+01	3,35E+00	2,55E-01	3,77E+01
Secondary mater	rial	kg	-	-	-	-
Renewable secondary fuels		MJ, net calorific value	-	-	-	-
Non-renewable secondary fuels		MJ, net calorific value	-	-	-	-
Net use of fresh	water	m^3	4,64E-01	1,62E-01	3,96E-03	6,30E-01

Table 6. Values from CED method 1.11, water from AWARE v1.04 for Karat RE

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
	Use as energy carrier		2,06E+00	4,15E+00	4,17E-03	6,21E+00
Primary energy resources – Renewable	Used as raw materials	MJ, net calorific value	0	0	0	0
	TOTAL	MJ, net calorific value	2,06E+00	4,15E+00	4,17E-03	6,21E+00
	Use as energy carrier		1,41E+01	1,25E+01	2,55E-01	2,68E+01
Primary energy resources – Used as raw Non-renewable materials	MJ, net calorific value	0	0	0	0	
TOTAL		MJ, net calorific value	1,41E+01	1,25E+01	2,55E-01	2,68E+01
Secondary mater	ial	kg	-	-	-	-
Renewable secondary fuels		MJ, net calorific value	-	-	-	-
Non-renewable secondary fuels		MJ, net calorific value	-	-	-	-
Net use of fresh	water	m^3	2,49E-01	1,05E-01	5,92E-04	3,55E-01

Waste production and output flows

Waste is included in the LCA model. There are no waste output flows outside the boundary system. That's why the values are zero.

Table 7. Waste production

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Hazardous waste disposed	kg	0	0	0	0
Non-hazardous waste disposed	kg	0	0	0	0
Radioactive waste disposed	kg	0	0	0	0

Table 8. Output flows

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Components for reuse	kg	0	0	0	0
Material for recycling	kg	0	0	0	0
Materials for energy recovery	kg	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0

References

- General Programme Instructions of the International EPD® System. Version 3.01 2019-09:18.
- PCR 2012:14 Woven, knitted or crocheted fabrics (of synthetic fibres) Version 2.13
- ISO 14025:2010 Miljömärkning och miljödeklarationer Typ III miljödeklarationer Principer och procedurer (ISO 14025:2006)
- Life cycle assessment of Karat by Ludvig Svensson AB, 2021-12-17
- · Marcus Wendin, LCA expert Miljögiraff